

Evidence for a Mass Dependent Forward-Backward Asymmetry in Top Quark Pair Production

D. Amidei, University of Michigan for The CDF Collaboration

top quark pair production

hard scatter cm-frame cross-section

- α , q^2 well measured in total σ and M_{tt} spectrum. SM like.
- here: production angle
 - dependence on q^2 , θ^*
 - asymmetry in production angle with respect to beamline

top quark pair production

hard scatter cm-frame cross-section

- $lpha,\ q^2,\ heta^*,\ ec{s}$
- lpha, q^2 well measured in total σ and M_{tt} spectrum. SM like.
- here: production angle
 - dependence on q^2 , θ^*
 - asymmetry in production angle with respect to beamline

top quark pair production

hard scatter cm-frame cross-section

- $\alpha, q^2, \theta^*, \vec{s}$
- α , q^2 well measured in total σ and $M_{\rm ff}$ spectrum. SM like.
- here: production angle
 - dependence on q^2 , $\theta^* \longleftrightarrow M_{t\bar{t}}$, Δy
 - asymmetry in production angle with respect to beamline
- Measurement of inclusive, Δy, and M_{ff} dependent asymmetry

prior measurements

• CDF, 1.9 fb⁻¹, inclusive, corrected to "parton-level"

- tt rest frame
$$A^{t\bar{t}} = 0.24 \pm 0.14$$

- NLO QCD
$$A^{tt} = 0.06 \pm 0.01$$

PRL 101, 202001 (2008)

- lab (pp) frame
$$A^{p\bar{p}} = 0.17 \pm 0.08$$

- NLO QCD
$$A^{p\bar{p}} = 0.04 \pm 0.01$$

D0, inclusive, background subtracted "data-level"

- tt rest frame
$$A^{t\bar{t}} = 0.12 \pm 0.08$$
 0.9 fb⁻¹ PRL 100, 142002 (2008)

$$A^{t\bar{t}} = 0.08 \pm 0.04$$
 4.3 fb⁻¹ ICHEP 2010

theoretical interest

- exotic gluons
 - massive chiral color
 - RS gluon
 - color sextets, anti-triplets
- IVB^{*}
 - Z'
 - FV W'Z' t-channel
- FV scalars
- effective Lagrangians
- nice theoretical review by Cao et al. PRD 81,014016, arXiv:1003.3461
- model building must contend with
 - total σ in good agreement with SM
 - dσ/dM_{tt} in good agreement with SM

this analysis

- 5.3 fb⁻¹
- standard "lepton+jets" selection, reconstruction
- establish rapidity variables, A_{fb} definitions, in tt frame and lab frame
- models
 - LO
 - QCD charge asymmetry
 - color-octet
- rapidity distributions in the data
- correct the rapidity distributions for
 - backgrounds
 - selection efficiency
 - reconstruction smearing

to find the model independent A_{fb} to compare to theory

- inclusive in tt and lab frame
- rapidity dependence in tt frame
- M_{tt} dependence in lab frame

top pair production and decay

lepton + jets mode

$$q\overline{q} \rightarrow g \rightarrow t\overline{t} \rightarrow (W^+b)(W^-\overline{b}) \rightarrow (l^+\upsilon b)(q\overline{q}\overline{b}) \rightarrow l^+ + E_T + 4j + \ge 1 \ btag$$

r-z view

event selection

- high p_t lepton (e/ μ)
 - E_t/p_t > 20 GeV (/c)
 - $|\eta| < 1.0$
- missing E_t > 20 GeV
- four jets
 - E_t > 20 GeV
 - $|\eta| < 2.0$
- at least one b-tagged jet
 - $|\eta| < 1.0$
- 1260 events
- 283±50 non-tt background
 - established in precision σ measurement
 - mostly W+jets

top reconstruction

$$l^+ + E_T + 4j^- + 2l^- btag \rightarrow (l^+ vb)(q\overline{q}\overline{b}) \rightarrow (W^+b)(W^-\overline{b}) \rightarrow t\overline{t}$$

- Jet-parton assignment, $p_z(v)$ via minimum of simple χ^2
 - Constraints: $M_W = 80.4 \text{ GeV/c2}$, $Mt = 175 \text{ GeV/c}^2$, btag = b
 - Float jet p₁ within errors

$$\chi^{2} = \sum_{lep, jets} \frac{(p_{t}^{i, meas} - p_{t}^{i, fit})^{2}}{\sigma_{i}^{2}} + \sum_{j=x, y} \frac{(p_{j}^{UE, meas} - p_{j}^{UE, fit})^{2}}{\sigma_{j}^{2}} + \frac{(M_{jj} - M_{w})^{2}}{\Gamma_{w}^{2}} + \frac{(M_{lv} - M_{w})^{2}}{\Gamma_{w}^{2}} + \frac{(M_{bjj} - M_{top})^{2}}{\Gamma_{t}^{2}} + \frac{(M_{blv} - M_{top})^{2}}{\Gamma_{t}^{2}}$$

top reconstruction

$$l^+ + E_T + 4j + \ge 1 \ btag \rightarrow (l^+ vb)(q\overline{q}\overline{b}) \rightarrow (W^+ b)(W^- \overline{b}) \rightarrow t\overline{t}$$

- Jet-parton assignment, $p_{\tau}(v)$ via minimum of simple χ^2
 - Constraints: $M_W = 80.4 \text{ GeV/c2}$, Mt = 175 GeV/c², btag = b
 - Float jet p_t within errors

$$\chi^{2} = \sum_{lep, jets} \frac{(p_{t}^{i, meas} - p_{t}^{i, fit})^{2}}{\sigma_{i}^{2}} + \sum_{j=x, y} \frac{(p_{j}^{UE, meas} - p_{j}^{UE, fit})^{2}}{\sigma_{j}^{2}} + \frac{(M_{jj} - M_{w})^{2}}{\Gamma_{w}^{2}} + \frac{(M_{lv} - M_{w})^{2}}{\Gamma_{w}^{2}} + \frac{(M_{bjj} - M_{top})^{2}}{\Gamma_{t}^{2}} + \frac{(M_{blv} - M_{top})^{2}}{\Gamma_{t}^{2}}$$

rapidity: lab frame

each event has a t_{lep} and t_{had} decay

$$\begin{split} &+ q_l \Rightarrow t_{leptonic} + \bar{t}_{hadronic} \\ &- q_l \Rightarrow t_{hadronic} + \bar{t}_{leptonic} \end{split}$$

and a rapidity for each

$$y_{leptonic} = y_l$$

 $y_{hadronic} = y_h$

- simple rapidity variable in lab frame: y_h
 - better measured than y_I
 - acceptance out to $|\eta| < 2.0$

- assign charge with lepton from t_{lep}
- interchange of lepton charge $\stackrel{\cdot}{\longleftrightarrow}$ interchange of t and \bar{t}
- If assume CP can combine

$$-q \cdot y_h = y_t^{p\overline{p}}$$

rapidity: tt frame

- a longitudinal boost can change the direction of the top quark
 - A is frame dependent!
 - A^{pp} is diluted by the boost

- a frame invariant variable
 - rapidity difference

$$\Delta y_{t\bar{t}} = q \cdot (y_l - y_h)$$
$$= y_t - y_{\bar{t}}$$

good : decreased dilution from boost (for NLO QCD effect)

$$A_{FB}^{t\bar{t}} \approx 1.5 \times A_{FB}^{p\bar{p}}$$

bad: decreased precision

$$\delta \Delta y \approx 0.100$$

– great: ease of interpretation:

$$\Delta y_{t\bar{t}} = 2y_t^{t\bar{t}}$$

 \rightarrow asymmetry in Δy_{tt} is equal to asymmetry in top quark production angle in tt rest frame

asymmetries

lab frame asymmetry in -qy_h

$$A_{FB}^{p\bar{p}} = \frac{N(-qy_h > 0) - N(-qy_h < 0)}{N(-qy_h > 0) + N(-qy_h < 0)}$$

$$= \frac{N(y_t^{p\bar{p}} > 0) - N(y_t^{p\bar{p}} < 0)}{N(y_t^{p\bar{p}} > 0) + N(y_t^{p\bar{p}} < 0)}$$

tt rest frame asymmetry in Δy:

$$A_{FB}^{t\bar{t}} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}$$

$$= \frac{N(y_t^{tt} > 0) - N(y_t^{tt} < 0)}{N(y_t^{t\bar{t}} > 0) + N(y_t^{t\bar{t}} < 0)}$$

also of interest: uncharged asymmetries in y_h and y_l-y_h

tt charge asymmetry in QCD

Halzen, Hoyer, Kim; Brown, Sadhev, Mikaelian; Kuhn, Rodrigo; Ellis, Dawson, Nason;
 Almeida, Sterman, Vogelsang; Bowen, Ellis, Rainwater

- tests of C in strong interaction confounded by difficulty of jet charge
- reconstructed top pair system has full information on charge flow
 - test C in strong interactions at large q²

expected QCD asymmetries

- MCFM NLO calculation at "parton level"
- MC@NLO + CDFSIM

model	level	$A^{\mathrm{p}ar{\mathrm{p}}}$	$A^{{ m t}ar{{ m t}}}$	
MCFM	parton	0.038 ± 0.006	0.058 ± 0.009	
MC@NLC	parton	0.032 ± 0.005	0.052 ± 0.008	truth
MC@NLC	$t \bar{t}$	0.018 ± 0.005	0.024 ± 0.005	sim + reco
MC@NLC	$t\bar{t}$ +bkg	0.001 ± 0.003	0.017 ± 0.004	sim + reco +bkg

MC@NLO:

- prediction for data level asymmetry in rest frame is zero!
- prediction for data level asymmetrry in tt frame < stat precision (0.028)
- Pythia remains good approximation of SM

inclusive distributions (both lepton charges)

symmetric!

inclusive distributions (both lepton charges)

symmetric!

separate by lepton charge

separate by lepton charge

combine charges

tt frame

lab frame

Events 400 $A_{data} = 0.073 \pm 0.028$ 🕶 data $A_{t\bar{t}+bkq} = -0.019 \pm 0.003$ tt + bkg bkg $A_{,r} = -0.009 \pm 0.002$ 350 A_{fb}^{bkg} = -0.054 ± 0.008 300 250 200 **150**⁻ 100 **50** -1.5 -0.5 0.5 -1 0 1 $-qy_{h} = y_{t}$

Combined Δy:

$$A_{FB} = 0.057 \pm 0.028$$

Compare to mc@nlo
 A_{FB} = 0.024

Combined –q*y_h:

$$A_{FB} = 0.073 \pm 0.028$$

Compare to mc@nlo

$$A_{FB} = 0.001$$

correct to the parton level

- dN/dy parton level histogram
 - parton level bins j w/ contents P_i
- the top data signal

$$- T_i = S_{ij} \times A_j \times P_j$$

- where
 - the A_i are the acceptances for each bin
 - the S_{ii} are the bin-to-bin migration ratios
 - both are estimated with Pythia
- dN/dy data level histogram
 - data level bins i w/ contents D_i
 - Sum of top and bkgrd: D_i=T_i+B_i
- to propagate data to parton level:
 - $P_i = A_i^{-1} \times S_{ii}^{-1} \times (D_i B_i)$
- result is optimized when number of bins = 4

backgrounds

- detailed model for all background components
- fully simulated model samples are reconstructed like data
- asymmetries small (but not zero)

backgrounds

- can be checked in events without b-tags. S:B = 0.3
- data and predictions in good agreement

tt rest frame lab frame

4-bin measurements

sample	level	$A^{ m t}{}^{ar{ m t}}$	$A^{ m par p}$
data	data	0.057 ± 0.028	0.073 ± 0.028
MC@NLO		0.017 ± 0.004	
data		0.075 ± 0.037	0.110 ± 0.039
MC@NLO	t ar t	0.024 ± 0.005	0.018 ± 0.005
data	parton	0.158 ± 0.074	0.150 ± 0.055
MCFM	parton	0.058 ± 0.009	0.038 ± 0.006

4-bin measurements

sample	level	$A^{ m tar t}$	-
data	data	0.057 ± 0.028	n.b.
MC@NLO	$t\bar{t}$ +bkg	0.017 ± 0.004	D0 signal level 4.3 fb ⁻¹
data	signal	0.075 ± 0.037	◆ 0.08±0.04
MC@NLO	$t ar{t}$	0.024 ± 0.005	we agree!
data	parton	0.158 ± 0.074	-
MCFM	parton	0.058 ± 0.009	25

Asymmetry is a function of Δy and M_{tt}

- in tt frame, QCD asymmetry has linear dependence on $\Delta y,\,M_{t\bar{t}}$
- NLO prediction from MCFM

• Δy , $M_{t\bar{t}}$ dependence generally of interest in other theories

$A(\Delta y)$, parton level, data

 0.123 ± 0.018

 $\text{MCFM} \quad parton \ 0.039 \pm 0.006$

FIG. 10: Top: The Δy —M plane. Each dot represents one event, while the shading is the approximate event probability in the standard PYTHIA based prediction.

How to quantify? Two bins: high and low

color octet model

- need to test methodology on large asymmetry
- model: color octets with axial couplings
- this is a test sample. not a hypothesis
- after Ferrario and Rodrigo arXiv:0906.5541
 - thanks to T. Tait for Madgraph
- If $g_A^q = -g_A^t$ get positive asymmetry
- Octet A
 - $g_v = 0, |g_A = 3/2|$
 - $-M_G = 2.0 \text{ TeV}$
 - $-\sigma/\sigma_{\rm sm} = 1.02$
 - ~ M_{tt} spectrum compares to Pythia
 - Model: True $A_{tt} = 0.16$ Reco $A_{tt} = 0.08$
 - Data: Parton $A_{tt} = 0.15$, Reco $A_{tt} = 0.06$
- Octet B
 - MG = 1.8 TeV. asymmetries bigger; σ , M_{tt} disrepancies bigger

color octet model

- binned like data, compared to MC@NLO
- reasonable model for the data

the two-bin boundary

- simplest A(M): two bins
- high and low mass
- where to put boundary?
- look at significance at high mass vs boundary
- ➤ best boundary: 450 GeV/c²

	Octe	etA	Octe	etB
bin-edge	$A^{\rm tt}$	significance	$A^{\rm tt}$	significance
(GeV/c^2)				
345	0.082 ± 0.028	2.90	0.168 ± 0.028	5.99
400	0.128 ± 0.036	3.55	0.235 ± 0.035	6.74
450	0.183 ± 0.047	3.91	0.310 ± 0.044	7.08
500	0.215 ± 0.060	3.60	0.369 ± 0.054	6.81
550	0.246 ± 0.076	3.25	0.425 ± 0.066	6.43
600	0.290 ± 0.097	2.97	0.460 ± 0.081	5.70

data: Δy at low and high mass

selection	all M	$M < 450 \text{ GeV}/c^2$	$M \ge 450 \text{ GeV}/c^2$
reco data	0.057 ± 0.028	-0.016 ± 0.034	0.212 ± 0.049
MC@NLO	0.017 ± 0.004	0.012 ± 0.006	0.030 ± 0.007

Δy at high mass by lepton charge

Δy at high mass by lepton charge

- consistent with CP conservation
- argues against experimental artifact, as detection/reconstruction are sign independent

unfold to the parton level

- dN/dy parton level histogram
 - parton level bins j w/ contents Pj
- the top data signal

$$- T_i = S_{ij} \times A_j \times P_j$$

- where
 - the A_i are the acceptances for each bin
 - the S_{ii} are the bin-to-bin migration ratios
 - both measured with symmetric Pythia
- dN/dy data level histogram
 - parton level bins j w/ contents Pj
 - data: in bins i w/ contents D_i=T_i+B_i
- to propagate data to parton level:

$$- P_i = A_i^{-1} \times S_{ii}^{-1} \times (D_i - B_i)$$

result is optimized when number of bins = 4

BUT NOW:

4 bins in Δy and M_{tt}

low mass forward low mass backward high mass forward high mass backward

tests of unfold procedure

Sample	$A^{{ m t}ar{ m t}}$ level	$M_{t\bar{t}} < 450 \text{ GeV}/c^2$	$M_{t\bar{t}} \ge 450 \text{ GeV}/c^2$
PYTHIA	MC truth	0.002	0.001
	reconstructed	-0.011 ± 0.006	-0.013 ± 0.008
	corrected	0.001 ± 0.018	0.006 ± 0.014
MC@NLO	MC truth	0.043	0.070
	reconstructed	0.015 ± 0.006	0.043 ± 0.009
	corrected	0.066 ± 0.014	0.086 ± 0.011
Octet A	MC truth	0.081	0.276
	reconstructed	0.024 ± 0.035	0.183 ± 0.010
	corrected	0.054 ± 0.022	0.308 ± 0.016
Octet B	MC truth	0.150	0.466
	reconstructed	0.078 ± 0.036	0.310 ± 0.009
	corrected	0.187 ± 0.024	0.476 ± 0.015

sys uncertainty of unfold procedure

Source	$M < 450 \text{ GeV}/c^2$	$M \ge 450 \text{ GeV}/c^2$
background size	0.017	0.032
background shape	0.003	0.003
JES	0.005	0.012
ISR/FSR	0.012	0.008
color reconnection	0.009	0.004
PDF	0.018	0.004
physics model	0.035	0.035
total	0.047	0.049

TABLE XII: Systematic uncertainties in the two-mass bin unfold

Att at high and low mass: data, signal, parton level

selection	$M < 450 \text{ GeV}/c^2$	$M \ge 450 \text{ GeV}/c^2$
data	-0.016 ± 0.034	0.210 ± 0.049
MC@NLO $t\bar{t}+bkg$	$g + 0.012 \pm 0.006$	0.030 ± 0.007
data signal	$-0.022 \pm 0.039 \pm 0.017$	$0.266 \pm 0.053 \pm 0.032$
MC@NLO $t\bar{t}$	$+0.015 \pm 0.006$	0.043 ± 0.009
data parton	$-0.116 \pm 0.146 \pm 0.047$	$0.475 \pm 0.101 \pm 0.049$
MCFM	$+0.040 \pm 0.006$	0.088 ± 0.013

FABLE XIII: Asymmetry $A^{t\bar{t}}$ at high and low mass compared to prediction.

Att at high and low mass: parton level

Studies of Att at the data level

selection	N events	all M	$M<450~{\rm GeV}/c^2$	$M \geq 450~{\rm GeV}/c^2$
$\operatorname{standard}$	1260	0.057 ± 0.028	-0.016 ± 0.034	$0.212{\pm}0.049$
electrons	735	0.026 ± 0.037	-0.020 ± 0.045	$0.120{\pm}0.063$
muons	525	0.105 ± 0.043	-0.012 ± 0.054	$0.348{\pm}0.080$
data $\chi^2 < 3.0$	338	0.030 ± 0.054	-0.033 ± 0.065	0.180 ± 0.099
data no-b-fit	1260	0.062 ± 0.028	0.006 ± 0.034	0.190 ± 0.050
data single b-tag	979	0.058 ± 0.031	-0.015±0.038	0.224 ± 0.056
data double b-tag	281	0.053 ± 0.059	-0.023 ± 0.076	$0.178 {\pm} 0.095$
data anti-tag	3019	0.033±0.018	$0.029{\pm}0.021$	0.044 ± 0.035
pred anti-tag	-	0.010 ± 0.007	$0.013 {\pm} 0.008$	$0.001 {\pm} 0.014$
pre-tag	4279	0.040 ± 0.015	$0.017{\pm}0.018$	0.100 ± 0.029
pre-tag no-b-fit	4279	0.042 ± 0.015	$0.023{\pm}0.018$	$0.092 {\pm} 0.029$

Jet multiplicity dependence

• the NLO QCD asymmetry has a strong N_{iet} dependence

selection	all M	$M < 450 \text{ GeV}/c^2$	$M \geq 450~{\rm GeV}/c^2$
inclusive	0.024 ± 0.004	0.015 ± 0.005	0.043 ± 0.007
4-jet	0.048 ± 0.005	0.033 ± 0.006	0.078 ± 0.009
5-jet	-0.035 ± 0.007	-0.032 ± 0.009	-0.040 ± 0.012

• data: the high mass asymmetry is significantly reduced for 5 jet events

selection	N events	all M	$M<450~{\rm GeV}/c^2$	$M \ge 450 \text{ GeV}/c^2$
data 4-jet	939	0.065 ± 0.033	-0.023 ± 0.039	$0.26{\pm}0.057$
data 5-jet	321	0.034 ± 0.056	$0.0049 {\pm} 0.07$	$0.086{\pm}0.093$

need to study other models, color flow, asymmetry reco in ttj

Frame dependence

• a selection of cross-checks in the lab frame using $-qy_h = y_t^{p\overline{p}}$

selection	all M	$M<450~{\rm GeV}/c^2$	$M \ge 450 \ { m GeV}/c^2$
data reco	0.073 ± 0.028	0.059 ± 0.034	0.103±0.049
MC@NLO	0.017 ± 0.004	-0.008 ± 0.005	$0.022{\pm}0.007$
A_h^+	-0.076±0.039	-0.085 ± 0.047	-0.053 ± 0.072
A_h^-	0.070 ± 0.040	0.028 ± 0.050	$0.148{\pm}0.066$
single b-tags	0.095 ± 0.032	0.079 ± 0.034	$0.130{\pm}0.057$
double b-tags	-0.004±0.060	-0.023 ± 0.076	$0.028 {\pm} 0.097$

- the high mass asymmetry is less significant in the lab frame
 - like QCD?
- the high mass double tag asymmetry is low in the lab frame
 - statistics?
 - $|\eta| < 1.0$ for b-tags. acceptance + physics?

Summary

- Inclusive A in lab and tt frames in 2 sigma excess over SM
- Consistent with CP conservation
- A^{tt} has a strong dependence on Δy, M_{tt}
- For $M_{tt} > 450 \text{ GeV/c}^2$

$$A_{\text{reco}}^{\text{tt}} = 0.210 \pm 0.049, \quad A_{\text{parton}}^{\text{tt}} = 0.475 \pm 0.112$$

 $A_{\text{NLO reco}}^{\text{tt}} = 0.043 \pm 0.006 \quad A_{\text{MCFM}}^{\text{tt}} = 0.088 \pm 0.013$

- The asymmetry at high mass is consistent with CP conservation
- Most cross-checks rule out non-physics, although a few puzzles
- The modest inclusive asymmetry originates with a significant effect at large Δy , M_{tt}
- There is a lot more work to do!